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Problems of nonlinear filtration, i.e. of filtration not obeying Darcy ‘s law, are studied 

chiefly because of their great practical importance. Flows of parafti-based oils, of oils 

containing asphaltenes. of oil-water emulsions and even flows of water in mud solutions 
(oil wells) are non-Newtonian and are characterized by smaller or larger deviations from 

linearity in the relationship between the rate of filtration w and the pressure gradient 

gradp . 
The most important of all the nonlinear filtration laws is the, so-called, filtration law 

with a limiting gradient. 

gradp=-+v--_~ (w>% IgradPl<y = const (w = 0) (0.f) 

This law was first used to describe the process of filtration of water through clay [l and 
2’j and the filtration of visco-plastic (Bingham type) fluids [3 and 43, but its range of 

application is much greater. 
In particular, it holds within the intermediate region of rates of filtration (not too small, 

but not large enough to exhibit inertia effects), provided that at high shear rates the rela- 

tion between tangential stresses and shear rates is almost linear. 

With this in mind, we can apply (0.1) to the majority of cases ; the region of filtration 

divides naturally into a region of motion where pressure gradient and filtration rate are 

connected linearly, and stagnation zones where the fluid is at rest (or moves with negli- 
gible velocities if (0.1) holds only approximately), In drilling for oil, stagnation zones 

represent either the inaccessible regions, or the regions from which oil can only be extrac- 
ted very slowly, Thus we see that determination of the extent of stagnation zones con- 

stitutes a major problem in the theory of nonlinear filtration. 
The formation of stagnation zones necessitates a rearrangement of the flow to change 

the filtration drag and this is only possible in the systems of more than one dimension, 
Below we construct a flow pattern and determine the boundaries of stagnation zones 

for a number of symmetrical configurations of sources and sinks using the Chaplygin 
transformation ( 16-j. also see [7 and 83 ). which was first used in problems of nonlinear 
filtration by Khristianovich in fQf(also see &LO]). Rates of filtration in the problem spe- 
cified above are reduced in the hodograph plane to a solution of boundary value problems 
for a linear equation in a semistrip with a lengthwise cut. Estimates for solutions and 
related estimates of the size of the stagnation zone on the physical plane, are obtained. 

Limit solutions are contructed , which define the character of the flow near the tip of the 
stagnation zone and make it possible to obtain simple lower estimate of its size. 

We should note that related problems were considered in [S], however the form of the 
law of filtration was changed to simplify it and the problem was subsequently reduced to 
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the solution of Laplace equation in the region with an unknown boundary. 

1. Baa112 Cquatlona. Let us consider a plane motion of an incompressible fluid 

obeying an arbitrary (in general nonlinear) law of filtration which we shall write after 
Khristianovich [9] 

,nrad Ii == - G CD(w) (H = ; (P + P&V)) (1.1) 

Here H is the applied pressure, $I is pressure, pg and 1-I are specific gravity and vis- 
cosity of the fluid, z is the vertical coordinate and k is permeability corresponding to 
the linear part of the filtration law. Denoting the angle between the X-axis and the fil- 

tration rate vector by 8 , we can write the equation of motion as 

illi --- 7 

itL 
-~(W)COSO, ~=-_((w)sir18,a(ua~se)i a(7u:re) =O (1.2) 

Continuity equation will be identically satisfied, if the following stream function $ 

is introduced 
azl, a* 

-8,c=- wsin8, -= wcos0 
aY 

(1.3) 

As we know [9 and lo], filtration equations become linear if w and 8 are taken as 

independent variables and $ and H as unknown functions. Then the filtration equations 

become [9 and lo] . 

wJ g- + ww (w) g- = I), Q)?!Lwe!_= 0 
a0 l3W 

(1.4) 

from which we can eliminate H and thus obtain a second order equation for $ 

The most interesting filtration law is the law with a limiting gradient 

@ (w) = w + h (w > (3, 0 < @ (w) < h (w = 0) (4.6) 

It is relatively simple and can easily be applied in practice. It presupposes the possi- 
bility of formation of stagnation zones or regions, in which ~5 0 . Outside these zones 

and within the flow.(l. 5) becomes 

g- fw(w+h)~+(w-a&==0 (1.7) 

With the stream function $ known, we can find fl from (1.4). which then assumes the 

form 
(w + a)2 ;; + w Jz$- = 0, (Wf h)-&iP~ = 0 (1.8) 

Boundary conditions for (1. 8) or (1.7) are formulated in the usual manner, the only 
unusual feature being, that the boundaries of stagnation zones are both, stream lines 
$J = const and the lines of zero velocity IJ = 0 . 

Finally. if $ and hr are determined in terms of w and 8 , then a line C on the we- 
plane will be mapped onto the xy-plane of initial independent variables by [9 and lo] 

2=&J-- s ‘G,,.+?_ d$ = zo- 
C s ‘$!$t_,,+?!!+# 

C 

d$= yo- -$!+jH--?!_$ dlC, (1.9) 

where r# and H are assumed to be given in terms of w and 8 . 
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2. The mapping of lymmatrlcrl reglona.* 1”. A plane problem of 

nonlinear filtration can be solved by transformation of a hodograph.provided that the 
xy-plane can be uniquely mapped onto a sufficiently smooth region of the we hodo- 
graph plane. We shall consider several simple problems for which the above statement 

holds. Consider two sources, each of intensity 4 at a distance of 2f, from each other. 

Then, the flow pattern will be symmetric with respect to the X- and y-axes (Fig. 1) and 

a) 1 b) 

Fig. 1 

we shall have at the origin 

w = 0, 1 grad H 1 = 0 (x = y = u) (2.l)l 

We shall assume that the functions $ and H and their 
first derivatives are continuous up to the boundary of the 

region of flow. Then we can immediately infer from, 
(2.1). that the origin is surrounded by a stagnation zone 

within which we have w = 0 , pressure gradient is tan- 

gential to the boundary and its modulus is equal to k . 

Hence, the critical points of the boundary (i. e. points 
at which the stream lines containing the stagnation zone 

meet), are cusp points (Fig. la). 
The flow pattern of Fig.la is easily mapped onto the hodograph plane (Fig, lb). Second 

quadrant of the physical plane becomes a semi-infinite strip with a. cut ABCGDEA on 
the We -plane. Length CG = a of the cut is equal to the maximum value of the y -com- 
ponent of the filtration rate achieved at some point G . We cannot exclude a priory the 
case when the stagnation zone contains the whole y-axis; in this case the point c in 

Fig.la recedes to infinity and the point G in Fig,lb merges with c and D . 

‘IO find y , we must solve (1.8) in the region ABCGDE with the following boundary 
conditions : 

9 = 0 on .4BCGD, ‘$ = $- on Eti, ‘$ = -$ (1 - ‘F) on DE (2.2) 

Last of these ‘conditions follows from the fact, that at infinity, flow pattern coincides 

asymptotically with that of a single point source of strength 24 . 

2”. We shall now replace one of the sources of the previous example with a sink of 
the same strength. This produces an outer stagnation zone (Fig. 2a). 

a) 

Fig. 2 

b) a) 

Fig. 3 

b) 

Indeed, if we assume that the outer stagnation zone is absent, then we must admit the 
possibility of appearance of a stream line of any length. By the law of filtration (1.6). 
difference of pressure H between any two points of a stream line cannot be smaller than 
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hJ? where R is the length of arc of this stream line. At the same time since the source 

and the sink can both be surrounded by two closed equipotential lines, pressure drop 

must be finite for all stream lines contained between these two equipotentials. Since 

the flow is symmetric with respect to z-axis and antisymmetric with respect to y-axis, 
the first quadrant of the physical plane again maps onto a semistrip in the hodograph 
plane W 8 (Fig. 2b). Moreover, 

$=O on ABC, $ = ‘/sQ on DA, H = oonst on CD 

which, with the second Eq. of (1.4) taken into account, becomes 

$=O onABC, qE1/$7 on DA, ih))%l= 0 on CD (2.3) 
The length of the segment W = 65 on the hodograph plane must also be determined. 

a) a) b) 

Fig. 4 Fig. 5 

The above two examples are typical both, as qualitative examples of flow patterns in 
the physicla plane and as associated problems in the hodograph plane. A large number 

of symmetrical source and sink configurations exist, which can easily be mapped onto 
the hodograph plane ~6 , For example, in the case of an infinite row of sources(Fig.3a). 
the basic element ABC&T on the physical plane transforms into a semi-infinite strip 

(Fig. 3b) ; here the problem of the stream function is not mixed, # = 0 on the boundary 
,.JBCD and $ = I,& on ,??“A (Fig. 3b). Similarly we can map two parallel rows of sour- 

ces or of sources and sinks, circular aggregates of sources and alternating assemblies of 

sources and sinks encountered in oil-drilling industry in form of doubly periodic meshes 
(so called five-, seven- and nine-point systems of well distribution). We shall give exam- 
ples of mapping a n-source circular aggregate (Fig, 4). and an element of a five point 

system (Fig. 5). In both cases, position of the end of the cut a must be determined sepa- 
rately, 

3. Limit c&aea rnd r8timrte8 for rolutlon:. 1”. We have seen that a num- 
ber of problems of great practical importance can be reduced to determination of the 
function $ satisfying (1.7) in a semi-infinite strip 0 < 8 < $ = const , 0 <W <a with- 
out a finite (first problem) or an infinite (second problem) segment, which are, respec- 
tively 8 = 81 , Ocwcaandf)=6$ ,a<w<a. Here the boundary conditions are 

I:-=0 (fl-0, o<w<w; w=o, o<e<e,; e==e,, Ofw<u) 

I)= Q(l-z; 1, (w = 0, 8, < 0 < 0,), $= Q (9= J&, 0 <w < 00) 

for the first problem and 
(3.1) 
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ll,=O(@=O, e=e,, o\(w<oo;w=o, 003<a,) \ 

for the second problem. 
$= Q (0=8,, a<w<m) (3.2) 

When the pattern exhibits an additional symmetry in the hodograph plane, then the 

problem can be reduced to a mixed problem for a narrow semistrip. 

It appears that, in general, only approximate solutions can be obtained. Simple esti- 
mates can however be given for them, by utilizing the boundary conditions (3.1) or (3.2). 

together with the fact that the maximum principle holds for the equation (1.7) (see e. g. 
[ll] ). By this principle, the function $ assumes its largest and smallest value on the 

boundary of the region in which the solution is sought. 

We shall now consider the first problem, for the solution of which we have an obvious 

estimate 0 -<'IIl(w, 0) < Q6 / &, (3.3) 

The right-hand side inequality follows from the fact that Qe/O, satisfies (1.7) and 

assumes values not smaller than $ at the points of the boundary. Let us now vary the 

magnitude of the parameter a . Let a and a'>a be two values of u , and let,+,, and 
9,~ be the corresponding solutions. Then in the general domain of definition we have 

$,, < ql, (3.4) 

In fact, $,, and +$a coincide at all points belonging to the boundary of definition with 

exception of the segment 0 = Si, a < 10 < a’ on which 9, > +,, = 0. 
In particular we have Q,,< % <<o (3,.-l) 

where & and q. denote solutions corresponding to a = ~0 and a = 0 ; inequalities (X4) 

are, moreover, valid in the general domain of definition of the required solutions. 

2”. In the following we shall also need some estimates of behavior of the solution 

near the boundary of the domain of definition. 
Let M be a general point of the boundaries of domains of definition of $,, and $,,r, 

and let P be an interior point. Since by the boundary conditions qlr, (Al) = $,, (AZ), we 

have $0 (I’) - 9, (W > Q,, (C - $,, (U) (3Ai) 

l$), (U-% (WllGM>Ill’af (f’)--& (Wllrj5M (Xi) 

Here a is a constant and rPM is the distance between P and M in the we -plane. 

Going in (3.7) to the limit as _?M we find, that the derivative of $, with respect to 

ra at the point on the boundary in any inward direction is not smaller than the corre- 

sponding derivative of V,,. In particular, this is true for the inward normal derivatives. 

The value of a in (3.7) should be chosen so as to exclude the trivial cases of derivatives 

becoming zero or infinity, whenever such a choice is feasible. 
On the segment of the boundary given by 8 = 0, 0 <w <a, direction of the inward 

normal coincides with the direction of increasing 8 , and from (3.7) we have 

~d~~~~l~~\(~~~~',aae~~~ol~0~Ql~o (3.3) 

where we have also utilized the inequalities (3.3) and (3.5) . 
Similarly, when 8 = 8, and directions of increase of the inward normal and of 8 are 

opposite, we have 

~~~~~~~~:,~e~~~,~aef~~~~~~~~~~,~ae~~~(eo-e,~ 

Further, on the sides of the cut we have 

(3.9) 
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!3.10) 

(3.11) 

ontherightside(%=el+O. oswS;a). 

Let us now follow the behavior of the solution at small values of w within the interval 

oses;81. The solution of (1.7) becoming zero when w = 0 and when 8 = 0 , 8 = 8 1 
has, on the segment 0 s w <a , the form 

$ = g P, (21.) Fin F (3.12) 
???=I 

where Pa(w) @, ( 0) = 0) is a solution of the hypergeometric equation 

9’ (U, $- a) y” + (W - h) y’ - (nm / 8,)2 y = 0 

These solutions have the form (see e. g. [12] ) 

P, (w) z II,w?F (- a, -! 2, Q,, -1.2, 3, - ?I,/ hj ES u,u”);‘,m 

(3.13) 

(3.14) 

where a, =?m/8, , F denotes a hypergeometric function and F”, (w) = 1 when w = 0. 

Hence, 

Thus.when Og8 ~6, , we have $(8,w”) = O(?J’) (w-0) and,assuming that a=2 

we obtain from (3.7) 
0 <a+,, /a (1t.2) < ayap (1s) (o<e<e,, 10~0) (3.16) 

The above argument is not applicable when a = 0 . However, going in (3.16) indirectly 
to the limit as a + 0 we obtain 

This estimate is not trivial, since a@, /a(w2) becomes infinite only at the point 

.e =e1 . 
3’. Let us now examine the results which are obtained when the above estimates are 

applied to the boundary of the stagnation zone i.e. to the stream line on which the velo- 

city becomes zero. Relations (1. 9) cannot be directly used in this case, since d$ and W 
also become zero. If, however, we consider the stream lines w = const for small W , then 

by previous estimate $ = 0 (w2) along these lines, and 

tends to zero as w-’ 0 . Consequently, for the stream line $ = 0 , relations (1.9) become 

.c = 50 -- s cm 8 dll 
-G-gT’ (3.18) 

Using (1. 8) we can write (3.18) as 

Let the source be situated at the point .%A, 0. Then. the nearest point of stagnation 
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zone will have the following coordinates : 

XB = XA + 
m a$(~, 0) dw s a0 3’ YB = 0 
0 

(since the segment AB has the corresponding semiaxis 0 SW <a , 8 = 0 extending m 
negative direction in the we-plane). Taking into account the inequalities (3.8) , we 
obtain 

and 
xA\<xBa'<xBa <xBo (3.22) 

Thus, the distance between the source and the stagnation zone increases monotonously 

with decreasing a ; we shall show later that zB. < 00, hence this distance remains 

Fig. 6 

finite as a + 0 . 

Let us now consider, on its own, the boundary of 

stagnation zone corresponding to the segment 

w=O , 058 se1 . Here we have 
(3.23) 

When 8 increases , then, by (3.17). x and y 
increase monotonously up to 8 = n/2 , then .Ij continues to increase , while x begins to 

decrease. Second relation of (3.23) and (3.17). for 81 <Is yield 

0 < Ya, (0) < Ya $9 < Yo ((3 (3.24) 

which together with (3.22) prove, that the corresponding branches of the boundary of 

stagnation zones corresponding to various values of a , do not intersect. 

Indeed, we can easily show that the inequalities (3.21) and (3.22) can be replaced 

with the strict inequalities, so that, when a <a ’ , then B, is situated to the right of Bar, 
If, at the same time, the boundaries of stagnation zones intersect, then we have at the 
point of intersection la=“, Cl, Y, =y,*, 0, >, qy (3.25) 

These, however, can easily be shown to be contradictory. Inequarrcles (3.24) and the 
monotonous growth of y with increasing 8 imply, that the last inequality of (3.25) sholuld 
be replaced with an equality, and (3.23) demands that (I I w) w, / &u = (1 / 2~) war I aW 
when w = 0 and 0 < 6 < 6,. But then the Brst inequality of (3.23) implies that 
5, - 2na = x0 # - xRaj, which, by (3.22). contradicts the first statement of (3.25). 
Inequalities obtained by us imply, that the distribution of stagnation zones relative to a 

source changes with decreasing a according to the pattern shown on Fig. 6 illustrating 
a flow in a wedge-shaped element of angle 8, . (On the physical plane, planes of sym- 
metry of the flow, play the part of impermeable walls of the wedge). Characteristic 
distance L representing the distance between the source and an impermeable wall, in- 
creases monotonously with decreasing a from zero when a = Q) , to infinity when a = 0 

(the latter part of this statement will be proved later). At the same time, the character- 
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istic distance A,!? changes from zero to some limit value i, which is reached at L? -1 0 

Yg. 6 suggests a very simple, although at the same time coarse, methcxl of estimating 
from below the size of a stagnation zone; if the source intensity & and the characreristic 

distance L are given, then the stagnation zone will be larger than the part oi xe stag- 

nation zone corresponding to a = 0 which falls within the wedge (shaded part on Fig. 6). 

‘This estimate will improve with increasing L (other condition remaining the same). !f 

on the other hand, 2 <i, sin 8, , then the estimate becomes trivial. The limiting solu- 

tion with Q, = 0 describes the flow structure near the cusp of the stagnation zone. 

ie. All estimates obtained above referred to the first problem (Subsection i”j, but 

estimates for solutions of the second problem (conditions (:i L) ) cali also be obtained by 

the same simple method. To avoid repetition, we shall formulate rhen: briefly. We obvi- 

ously have (using the previous notation), 

i 1 II‘,_ --I Ii’,, ; (i’,, .< ljlo , $2 ’ ‘, !! ; 3 2t; I 

and solution $. satisfies, in this case, inequalities 

0 -s Qo @> 0) < (20 ! If, (0 < I3 ,SC 0,) 

0 C?‘. _ a(w, 0) c Q (0” - 0) i (H” - cl,) (0, < fJ d 0,) (0 < w < mj (3.273 

Fu[rner, we have on the boundary a = 0 , 0 <w <a , 

0 5< “lc‘,,, ,’ ~‘eG”ICh’no~ag,/ae,(Q/e, (3.28) 

- Q / CO0 - 0,) $ a$,, i: de sg a+, /se < a+,, / ne < 0 for 0 = fl, (32.9) 

On the sides of the cut 6 = a 1 , w > a , we have 
(3.30) 

Q:el.,-a9,,/a6,<a~~nfae~a~~,/ae (on the left side, 8 = e1 - 0) 

-- Q / (eO ~- 8,) I.-- agO / de y3 at& / ae 2 aqua, / ae (on the right side, 0 = O1 + 0) 

Finally, for small w (w c a) we have an expansion analogous to (3.13) (where 8 1 

should be replaced with 8,) and, as before, we obtain the inequality 

0 < i)IjI,, / 0 (W?) -< iI$$l / 0 (,a’) < a$Io / a (IS) (0 4 0 d a,) (3.31) 

in which a$,/a($) becomes infinite when 8 = 81 . 

5*. As in the first problem, the estimates obtained lead at once to the corresponding 

estimates for position of the boundaries of the stagnation zone. First, we note that the 
position of the source relative to the sink is given by 

J-L) -_) s cos 8, OJ, (e,, d 
.t =- _ -~ (,.:! de 

~- cl,,., J/D dw (3.32) 

where integration is performed along the &es of the cut in the AED direction. Rela- 
tions (3.32) give 

(3.33) 

which, together with (3.31), yields 
al 

‘-4 Da 2 
a$o(e, - 0. 1f.j w. (0, f 0, w) 

a0 - ae (3.34) 
,‘ 

A distance between the source and the cusp of the stagnation zone, is given by 
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where, again, the inequalities can easily be represented in a rigorous form. 
The argument used to show that the boundaries of stagnation zones corresponding to 

various a do not intersect, can also be fully repeated. One difficulty arises, namely that 
the case fjl s;TT is now insufficient. If, however, we assume that 8,s 2ll and use the 

argument given in Subsection 4” for 0 S 8 SI-I repeating it for the segment n s 8 Se0 

in the direction away from the sink J’ , then we easily obtain an inequality analogous to 

(3.35) 
0 < x:F - x&,’ < xF - “Ea <<‘“F - “& i3.X) 

and the following important theorem. 
With Q and h fixed. width of the region of flow increases monotonously with decreas- 

ing a . The distance AB between the source and the cusp of the stagnation zone tends 

to a finite limit as a -) 0 . A solution corresponding to a = 0 can be used to describe the 

flow near the point B and rough estimates of minimum size of the stagnation zone can 

be constructed in the manner indicated in Subsection 3”. 

4. Limit 8OlUtiOIl8. 1’. We shall find now the limit solutions of the first and 

second problem, corresponding to a = 0. Their importance lies in the fact, that they can 

be written in a sufficiently simple form, using elementary methods. Let us consider the 
first problem. Putting &? = 0 we arrive at the following problem: fo find a function 

$ (w, 8 ) satisfying (1.7) in the semistrip 0 5 8 S 8, , w 2 0, together with conditions 

4 (% 0) = 0, 9 (0, 0) = 0 (0 < 0 < 0,) 

V (0, e)= Q s 
Assuming that 

$ 04 0,) = Q 

II, (w, e) - Q f3 / 8, + Y’, (w, 8) 

(4.1) 

(4.2) 

we find, that, when 8 = 0 and 8 = 8, , $ o becomes zero for all w , while when w = 0, 

y,(o, e)= -Qe/e, (0 -=c 8 < 0,) 

m e. - 8 
yo(o, w=-K80 

1 
(el < 0 < 0,) 

Expanding the solution into a Fourier series we obtain 

YO (zu, e) = jj Porn(w) sin y 
?7L=l 

where Polp ( W) are the solutions of 

w tw ifih) Y” + (7~ - h) Y’ - alam ! eOv - 0 

which become zero as W-CO and assume the value 

Porn (0) = - 
2Qeo meI 

(e, - el) nzrnz sin 80 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

when w=O. 

Solution of (4.5) which tends to zero as w -)OD , has the form 

Y= (A)” F (s - 1, s, 2s+ 1, R/b+ J.11, s=nm/0 (4.7) 

where F denotes a hypergeometric function. Using a well known integral representation 
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and the condition (4.6). we have 1 
w 51tt2e1 it s-i_ 1 * 

““m (20) z - -q& _ @]) sin --j&- ~ - 
P-’ (1 - t)” dt 

__..--- 
?L’ !- I+ s I ,, (!{‘/h_i.j -I)+1 

(4.9) 

Inserting (4.9) into (4.4), changing the order of summation and integration and sum- 

ming a series annearing under the integra1 sign, we obtain 
1 

Q i. 

where 
vX = t (1 - t) / (WI,-’ + I - t) (4.14) 

2’. Let us examine in more detail the solution corresponding to 8, = 28, = 77 (the 

very first problem on two sources). After simple transformations,(4.10) becomes 

The inner integral in (4, p2) can be expressed in terms of elementary functions. Let 
us now establish the position of the stagnation zone corres~nding to (4.12). relative to 
a source. Substituting (4,I2) into (3.20) and (4.2). we obtain 

(4.13) 

It is easy to see that the integrand in (4.13) has a second order zero when w = 0 which 
implies that the integral converges. Integration by parts followed by in~gra~~o~ of the 

inner integral with respect to v and change of the order of integration, reduces the prob- 
lem to a single integration which yiejds 

.I‘,( -.-- .t’,, : = (I.514 Q / k := 1.6Z Q / nh (4.14) 

To aid us in investigating the behavior of the boundary of the stagnation zone, we shall 
now compute a Y,/a w . Differentiation of(4* 12f yields 

Putting W = 0 we find that the resulting integral is equal to zero, hence aYo( 0,8 ),@w = 0, 
From (3.23) we see that the coordinkes of the boundary of the stagnation zone are 



On some two-dimenhnal problems of the theory of fllttation 839 

given, respectively, by the real and imaginary part of the tillowing integral: 
e ago w v) aw dv E lim t I, (4.lfi) 

I, w--r0 

We shall find first I0 first. Integrating with respect to v instead of t we can show 

that the ratio 1 /W remains finite when W-' 0 and 8 # TT /2 , while 
8 1 

Calculating the integrals in (4.17) and using (3.23), we obtain 

44 
z@)=“B ix L 

n (1 + sin O)z 
-& cos 8 

-J&-(+-e) tpe] 

(4.17) 

(4.18) 

which are the required expressions. We see from them, that the limit stagnation zone is 

unbounded as a-@ 0 and consisits of two parabolic branches extending to infinity. On 

the physical plane this corresponds to a flow about an infinite curvilinear wedge. The 
boundary is shown on Fig. 7, where the points plotted are accompanied by the values of 

8 in degrees. The solution obtained is applicable to the problems mentioned previously* 
and it serves a double purpose ; first, it describes the flow pattern near the cusp of the 

stagnation zone, second, it can be used as a zero approximation in deriving solutions cor- 

responding to small a by the method of small parameter. 

Fig. 7 Fig. 8 

3O. We shall now construct a limit solution for the second problem. When a = 0 , the 

strip 0 c 8 < 8, is split into two parts and solution can be obtained for each part sepa- 
rately, by the same method. Therefore we shall consider a semi-infinite strip 0 <TJ <a, 

o<e <e1 t The required solution which becomes zero when 8 = 0 and w = 0 and at Q 
when 8 = 81 , has the form ‘J’ (w, 9) = Q 8 / 8, + y” (w 0) (4.19) 

where Y” (w ,8 ) = 0 along the sides of the strip and 
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I” (0, El) = - Q 0 / o* 
The solution can be expanded into a Fourier series 

14.20! 

m=I 

where p’,(w) are found in exactly the same manner as &o(w) for the first problem 

(relations (4.4) to (4.9) ) and are 

Inserting (4.22) into (4.21). interchanging the summation with integration and perform- 

ing the summation of the series under the integral sign, we obtain 

where v is given by (4.11). 
Let us now consider the particular case 81 = IT corresponding to the source-sink pair 

of equal intensity. Taking into account (4.23). we have 

Derivative &+/a6 is given by 

,j,i’ ij 4 0 hp”H 
- ,‘- Rfh - 

! (I -tjd/ 

,x “2 \ 
--. ~- 

//’ a . (1 I \‘,..“‘I:’ (5.5) 
0 

Hence,the distance between the source and the cusp of the stagnation zone is given by 

4c! .:’ I 

\ 
n’0 

“0 -.rA4 :-- 
nh c -G (0 )m 1)” I 

’ (1-_0[1-~v-~--vvt-~o(2Y-~~~ dt 
(1 + v)” (Q + 1 - t) (4.2dj 

0 0 

which on integration with respect to v and change of the order of integration, gives 

.Tli - 2 A = 1.61 Q ,’ iv -= 5.07 Q ,I .zh (4.27) 

To find the form of the stagnation zone boundary, we shalldifferentiate (4.24) twice 
with respect to 19 and pass to the limit as w -‘O . This gives 

1 

+ cos6 (1 --I- t”)] sinfldt 
(1 -1. it (‘0~ e + 12)~ (4.28) 

” 

Let us now compute the integral 
c 

I, == 1 PX (c)de := * 1 3 cos $I(1 - cos T) 3 
sin2 cp ---J-t- 

0 

+ 
(I - cos p)” 

sin” v 1 2 COS ‘p -; 2 t_ 
cp(l+-2coscp) 

sin cp 1 f 
+ i j +y(l - +-) + 2(1-Ync;s@2 (, _f_ g_._)]] (4.29) 



From (4.29) it 

On seme two-dimensional problem of the theorj of filtration 841 

follows, in particular, that 

I,-_(-~+i~)(ltO(sinrp)) when cp-+.n ~4.~~) 

Separating the real and imaginary parts of 4, , we obtain the coordinates of the points 

of the stagantion zone v 
z(cp)=zn +A ReZ,, y(cp)=hJm I, (4.31) 

Fig. 8 shows the stagnation zone boundary corresponding to (4.29) (where the numbers 
denote the values of cp in degrees). The solution obtained is asymptotical,ly similar to 

that obtained previously for the first problem. 
The author extends his thanks to G. I. Barenblatt, M. G. Bemardiner and R. L. Salganik 

for valuable remarks concerning the contents of this work, and to N. S. Turbanova and 

T. N. Ivanova for performing the computations. 
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